

Capability Acceptance Process Acceptable Capability List

Version: 4.2 September 2021

Table of Contents

1.	Intr	oduction
1	.1.	Document Purpose
1	.2.	Document Format
1	.3.	General Donor Guidelines
1	.4.	Disclaimer
1	.5.	Configuration
1	.6.	Manufacturer Contact Information
1	.7.	Document Updates
2.	Che	ckpoint Transportation Security Equipment6
2	.1.	Advanced Imaging Technology6
2	.2.	Automated Screening Lanes
2	.3.	Boarding Pass Scanners
2	.4.	Bottled Liquid Scanners
2	.5.	Checkpoint Property Screening System14
2	.6.	Credential Authentication Technology16
2	.7.	Enhanced Metal Detectors
2	.8.	Explosives Trace Detectors
3.	Gen	eral Checkpoint FF&E
4.	Che	cked Baggage Transportation Security Equipment
4	.1.	Explosives Detection Systems
4	.2.	Explosives Trace Detectors
5.	Oth	er Capabilities

1. Introduction

1.1. Document Purpose

The Acceptable Capability List (ACL) serves as the Transportation Security Administration's (TSA) official list of Capability¹ or Transportation Security Equipment (TSE) that TSA is able to accept from Donors with the intent of donating to TSA to be used within operations.

The ACL is a living document that includes all Capabilities currently able to be donated to TSA based on the approval of applicable phases of the Department of Homeland Security (DHS) Acquisition Lifecycle Framework² (i.e. receiving an approved Acquisition Decision Event-3 Acquisition Decision Memorandum).

1.2. Document Format

This document is arranged by checkpoint TSE, checked baggage TSE, and other capabilities. Furniture, Fixtures and Equipment (FF&E) is also listed per TSE as applicable. Each TSE has FF&E that is required to be provided with the TSE to ensure successful operations. In addition, TSA may require additional associated FF&E, on a case-by-case basis, to allow for efficient operations at the checkpoint or checked baggage areas. TSA reserves the right to require additional FF&E that is not listed within this document.

1.3. General Donor Guidelines

TSA encourages checkpoint and checked baggage TSE be aligned with existing TSE make and models already deployed to that airport. Additional guidelines for specific TSE or other capabilities are listed below.

1.4. Disclaimer

TSA reserves the right to add or remove any Capability from the ACL.

1.5. Configuration

The Device Number and Software Version indicate the only configurations that TSA will accept as a donation to be used within TSA operations. The Donor shall ensure that the configuration of any donated Capability is in accordance with the configuration listed in the ACL. As there may be a delay between the time a Donor procures a Capability and when it is installed, the Donor is responsible to ensure the latest TSA-approved configuration listed in the ACL is installed.

Any changes to the configuration (to include changes to parts, color, exterior of the TSE, etc.) must be approved by a TSA Acquisition Program Management representative prior to delivery,

¹ Any type of technology, property, or equipment such as TSE, emerging technology, or Furniture, Fixtures, and Equipment. Within this document, Capability and Transportation Security Equipment are considered synonymous. For the purpose of this document, the TSE list on the ACL is defined as "Acceptable Capability".

² Additional information regarding the DHS Acquisition Lifecycle Framework is provided within the DHS Acquisition Directive 102-01-001.

installation, and the applicable form of acceptance testing and may not be deemed acceptable. If changes to parts, colors, exterior of the TSE are approved, Donor will be responsible for ensuring that the TSE can be and is returned to TSA's standard configuration prior to the TSE being moved. Additional testing may be required for any changes to the configuration.

1.6. Manufacturer Contact Information

Company	Address	Point of Contact	Phone Number	Email Address
Analogic Corporation	8 Centennial Drive Peabody, MA 01960	Patrick Splinter	(978) 326-4103	PSplinter@analogic.com
CEIA USA	9155 Dutton Drive, Twinsburg, OH 44087 USA	Hasbrouck Miller	330-283-1277	bmiller@ceia-usa.com
DESKO GmbH	56 95448 Bayreuth Germany	James Waters	262-344-5571	James.Waters@desko.de
Idemia Identity and Security N.A.	296 Concord Road Billerica, MA 01821	James Queenan	(978) 215-2618	James.Queenan@us.idemia.com
Leidos Security Detection & Automation	1 Radcliff Road, Tewksbury, MA 01876	Paul Erhard	781-640-3782	Paul.Erhard@Leidos.com
Rapiscan Systems Inc.	2805 Columbia Street Torrance, CA 90503	Lorie Halitzka	310-349-2637	lhalitzka@rapiscansystems.com
Reveal / Leidos	2985 Scott Street, Vista CA 92081	Brian Fowler	858-826-5593	FowlerBR@leidos.com
Scarabee Aviation Group	PO Box 23514 1100 EA Amsterdam The Netherlands	Jeroen Verweij	+31 85 7608620	Jeroen.Verweij@scarabee.com
Smiths Detection Inc.	2202 Lakeside Blvd Edgewood, MD 21040	Susan Chalk/ Ron Shields	410-612-2544/ 571-242-5050	Sue.Chalk@smiths-detection.com/ Ron.Shields@smiths-detection.com
Vanderlande Industries Inc.	1975 West Oak Circle Marietta, GA 30062	Doug Deihl	617-501-7897	Doug.deihl@vanderlande.com

1.7. Document Updates

Page	Section	Update	Date
4; 5; 8; 9; 12; 13; 14; 16	1.6; 1.7; 2.1.2; 2.3.2; 2.3.3; 2.3.4; 2.5.2; 2.6.1; 2.6.2; 2.7.1; 2.7.2; 2.7.3; 2.9.2	Automated Screening Lane Software Version update; Addition of Credential Authentication Technology system; Additional technology description and guidelines included for various Checkpoint Transportation Security Equipment;	April 2020
4; 9 -10	1.6; 2.3.3; 2.3.4;	Change in company name and contact information throughout document; Update to ASL software version; Addition of Anti-Microbial Bins and ASL Training Simulators	August 2020

1; 10; 11;	1.6; 10.4; 1.6	Updated contacts, phone numbers and addresses; Changed Technology Nomenclature; Updated VI Bins; Added VI Covid Protective Shielding Kit	December 2020
10	2.3.4	Addition of VI Anti-Microbial Bins	April 2021
15,16, 8	2.6; 2.2	Addition of Analogic Mid-size CPSS; Deleted Advanced Technology X-ray (AT)	September 2021

2. Checkpoint Transportation Security Equipment

- 2.1. Advanced Imaging Technology
 - 2.1.1. Technology Description

Advanced Imaging Technology (AIT) detects metallic and nonmetallic anomalies concealed on passengers as they enter the screening checkpoint. AIT systems are used to screen passengers safely for weapons, explosives, and other objects concealed under layers of clothing, without physical contact, thus reducing the need for pat down searches.

2.1.2. Guidelines for Donors

Factory Acceptance Testing (FAT) and Site Acceptance Testing (SAT) will be required for an AIT. An Explosives Trace Detection (ETD) system must be co-located with the AIT. Therefore, the Donor is required to coordinate with TSA regarding whether an ETD is available to be deployed with the donated AIT. If the Donor intends to donate an ETD as well, please see Paragraph 2.8 for technology and FF&E required for an ETD.

2.1.3. Technology

The following is the list of technology that TSA can accept as a Capability.

Vendor	Device Make & Model	Software Version	Date Added to ACL
Leidos Security			
Detection &	ProVision 2	2.2	September 2019
Automation			_

2.1.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
Leidos Security Detection & Automation	ProVision 2	Operational Test Kit	L3 Security & Detection Systems, Inc.	N/A	Operational Test Kit

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
Leidos Security Detection & Automation	ProVision 2	Stanchions	Lavi	STANCHION- 50- 3000DL/WB/BK	Between 4 and 8 stanchions to properly queue passengers and hold for additional screening
Leidos Security Detection & Automation	ProVision 2	Anti-Fatigue Mats	Carolina Industries	TBD on size	Sufficient coverage for areas where TSOs operate

2.2. Automated Screening Lanes

2.2.1. Technology Description

Automated Screening Lanes (ASLs) are a property handling system integrated into an existing AT X-ray. ASLs are necessary to mitigate checkpoint security vulnerabilities, reduce checkpoint passenger congestion, and reduce the number of misdirected bags.

2.2.2. Guidelines for Donors

TSA is currently pursuing Computed Tomography (CT) systems under the Checkpoint Property Screening System (CPSS) program. TSA intends to qualify CPSS Full-Size, which integrates a CT system with automated bin return capability. Upon successful qualification, TSA will update this document, as appropriate, to add CPSS Full-Size. Upon the addition of CPSS Full-Size to the ACL, TSA will no longer accept ASL systems.

The ASLs listed within Paragraph 2.2.3 can only be integrated and deployed with AT X-rays. At this time, ASLs cannot be integrated with any CT technology. TSA will reassess this guideline if integration of these technologies is approved in the future.

Pre-Integrated Site Acceptance Testing (Pre-iSAT) as well as Integrated Site Acceptance Testing (iSAT) will be required for an ASL. Either SAT or Operational Acceptance Testing (ORT) will be required for the AT X-ray in which the ASL will be integrated.

With each ASL, Donors must provide an adequate number of bins for operational efficiency, based on OEM guidance, throughout the life of the warranty. TSA estimates that this should be approximately 60-100 bins per ASL and refreshing the bin fleet annually may be necessary. The Donor shall include services to clean ASLs, such as cleaning ASL bins, the lowerator, and the return bin system, at minimum, on a bi-weekly basis within the warranty.

The configuration of modules necessary will be based on each checkpoint and will vary, but Donors should provide the most efficient configuration for the checkpoint consistent with TSA design guidelines.

2.2.3. Technology

Vendor	Device Make & Model	Software Version	Configuration	Date Added to ACL
Leidos Security Detection & Automation	Leidos ProPassage Lane	V9.7 & V9.3	Leidos ProPassage Lane with Smiths Detection Inc. AT X- Ray Leidos ProPassage Lane with Rapiscan AT X-Ray	September 2019
Vanderlande Industries Inc.	Scannojet Gen. 3 with enhancements (SCNG3E)	eVelocity V8.0.6	SCNG3E with Smith Detection AT X-Ray SCNG3E with Rapiscan AT X-Ray	May 2020
Scarabee Aviation Group	Smart Security Lane (SSL)	V 5.2.19 w/eVelocity 8.0.6	SSL with Smiths Detection Inc. AT X- Ray	September 2019

The following is the list of technology that TSA can accept as a Capability.

2.2.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
Leidos Security Detection & Automation	Leidos ProPassage Lane	Bins		MHA PN 00022055	Grey Tray
Leidos Security Detection & Automation	Leidos ProPassage Lane	Bins		MHA PN 00022325	Red Tray
Leidos Security Detection & Automation	Leidos ProPassage Lane	RFID Tag		MHA PN 00023693	RFID Tag
Leidos Security Detection & Automation	Leidos ProPassage Lane	Anti-Microbial Bins		12043-SLT-S-B-A	Grey Tray
Leidos Security	Leidos ProPassage Lane	Anti-Microbial Bins		12043-SLT-S-B-A	Red Tray

Detection &				
Leidos Security Detection & Automation	Leidos ProPassage Lane	Training Simulator		
Vanderlande Industries Inc.	Scannojet (SCN)	Bins	095527-727-00000	Tray only
Vanderlande Industries Inc.	Scannojet (SCN)	Bin with RFID Tag (diagonal)	095527-726-00000	Tray with RFID tag
Vanderlande Industries Inc.	Scannojet (SCN)	Bin with RFID Tag (centered)	095528-389-00000	Tray with RFID tag
Vanderlande Industries Inc.	Scannojet (SCN)	Anti-microbial Bin with RFID Tag (centered)	015729-150 -00000	Tray with RFID tag
Vanderlande Industries Inc.	Scannojet (SCN)	Anti-microbial Bin with RFID Tag (diagonal)	015729-150 -00001	Tray with RFID tag
Vanderlande Industries Inc.	Scannojet Gen. 3 (SCNG3)	Training Simulator		
Vanderlande Industries Inc.	Scannojet Gen. 3 (SCNG3)	COVID Protective Shielding Kit		Tempered Glass Barrier
Scarabee Aviation Group	Smart Security Lane (SSL)	Bins	SSL01_XA001_NH	ASL Bin
Scarabee Aviation Group	Smart Security Lane (SSL)	Training Simulator		

- 2.3. Boarding Pass Scanners
 - 2.3.1. Technology Description

A Boarding Pass Scanner is a device employed to read a passenger's boarding pass and to display the passenger's name, flight information, and risk status to the Travel Document Checker (TDC). With this information, the TDC is able to determine if a passenger should be admitted to, and routed through, the checkpoint to receive the appropriate level of security screening.

2.3.2. Guidelines for Donors

None at this time.

2.3.3. Technology

The following is the list of technology that TSA can accept as a Capability.

Vendor	Device Make & Model	Software Version	Date Added to ACL
DESKO GmbH	PENTA Scanner BPV2.0	Latest TSA-approved software version	September 2019

2.3.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
DESKO GmbH	PENTA Scanner BPV2.0	Rechargeable Battery	DESKO GmbH	3001659	Rechargeable Battery
DESKO GmbH	PENTA Scanner BPV2.0	Battery Charger	DESKO GmbH	3001878	Battery Charger
DESKO GmbH	PENTA Scanner BPV2.0	Stanchion Mounting Bracket	DESKO GmbH	3001879	Stanchion Mounting Bracket

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
DESKO GmbH	PENTA Scanner BPV2.0	Anti-Fatigue Mats	Carolina Industrial	Item number varies based on length and width required	Sufficient coverage for areas where TSOs operate
DESKO GmbH	PENTA Scanner BPV2.0	Stanchion	Lavi Industries	Beltrac Post with 7' single or double belt	For mounting

- 2.4. Bottled Liquid Scanners
 - 2.4.1. Technology Description

Bottled Liquid Scanners (BLS) units are used to differentiate explosive or flammable liquids from common, benign liquids carried by passengers. BLS units analyze substances within a container, measuring particular characteristics of a container's contents. The device can analyze substances within a container in seconds without having to open the container, and also can be used to screen medically exempt liquids.

2.4.2. Guidelines for Donors

FAT and SAT will be required for a BLS. An ETD is required to be deployed with a BLS. Therefore, Donor is required to coordinate with TSA on whether an ETD is available to be deployed with the donated BLS. See Paragraph 2.8 for technology and FF&E required for an ETD.

2.4.3. Technology

The following is the list of technology that TSA can accept as a Capability.

Vendor	Device Make & Model	Software Version	Date Added to ACL
CEIA USA	EMA-MS	EMSS4160	September 2019

2.4.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
CEIA USA	EMA-MS	Test reference bottle	CEIA USA	Part# 45863	Test reference bottle
CEIA USA	EMA-MS	Test reference bottle	CEIA USA	Part# 47967	Test reference bottle

- 2.5. Checkpoint Property Screening System
 - 2.5.1. Technology Description

TSA established the CPSS Program to test and qualify CT systems for use at airport security checkpoints nationwide. TSA is pursuing three CT configurations. However, only the systems listed in Paragraph 2.5.3 are currently available for donation. As additional CT systems are qualified, this document will be updated accordingly.

- CPSS Base A CT scanner equipped with gravity rollers, manual diverter, Primary Viewing Station (PVS), Alternate Viewing System (AVS), and version 6.2 Level 0 threat detection algorithm. Base systems may be used to screen oversized items.
- CPSS Mid-Size A CT scanner equipped with gravity rollers, ingress/egress conveyors, operator initiated item divert capabilities, PVS, AVS, and version 6.2 Level 0 threat detection algorithm.
- CPSS Full-Size A CT scanner equipped with automated ingress/egress conveyors, operator initiated auto divert capabilities, automated conveyance system with parallel divestiture and re-composure, automated bin return, high threat containment box, PVS, AVS, and version 6.2 Level 0 threat detection algorithm.
- 2.5.2. Guidelines for Donors

SAT will be required for a CPSS Base. Pre-Integrated Site Acceptance Testing (PreiSAT) and SAT and Integrated Site Acceptance Testing (iSAT) will be necessary for CPSS Mid-size and Full-size systems after complete assembly and integration.

As in the case of other checkpoint technologies, TSA's CPSS deployment strategy intends to maintain consistency of system make and models of CPSS devices in checkpoints whenever possible to support efficient screening operations and costs. TSA may request that Donors be responsible for relocating deployed passenger carry-on screening technology to support this strategy.

With each CPSS unit, Donors must provide an adequate number of bins for operational efficiency, based on OEM guidance, throughout of the donor warranty period. As determined by CPSS, the quality of bins for each system will be identified in Paragraph 2.5.4. The Donor shall include services to clean and maintain the CPSS, including cleaning CPSS bins, the lowerator, and the return bin system, at minimum, on a bi-weekly basis within the warranty. Refreshing the bin fleet annually may also be necessary.

The configuration of conveyor modules necessary for CPSS will vary based on each checkpoint, but Donors should provide the most efficient layout for the checkpoint consistent with TSA design guidelines.

2.5.3. Technology

The following is the list of technology that TSA can accept as a Capability.

Vendor	Device Make & Model	Software Version	Configuration	Date Added to ACL
Analogic Corporation	Analogic ConneCT	10.04.06	Mid-size	September 2021

2.5.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description	Quantity
Analogic Corp.	Analogic ConneCT	Viewing Stations (Primary and Alternate)	Analogic Corp	10-79026-01	Includes computer and associated components	2 per system
Analogic Corp.	Analogic ConneCT	Bins (Antimicrobial)	Analogic Corp	103-127378-03	2 RFID tags per bin	140 per system
Analogic Corp.	Analogic ConneCT	Training Simulator	Analogic Corp	106-121486-01	Includes computer, monitor, monitor stand, keyboard, mouse, power strip and software	1 per system
Analogic Corp.	Analogic ConneCT	Operational Test Kit	Analogic Corp	10-78795-01	Image Quality	1 per system

- 2.6. Credential Authentication Technology
 - 2.6.1. Technology Description

Credential Authentication Technology (CAT) provides a primary means for authentication of passenger travel documents/identification (ID) that are presented to TSOs by passengers before entering the passenger screening checkpoint, and for determining the Secure Flight status for the passenger. CAT satisfies the mission need to verify passenger IDs effectively and rapidly, and to detect IDs that are fraudulent, expired, and/or show evidence of tampering. Additionally, CAT verifies a passenger's Secure Flight (SF) screening vetting status and validates a passenger's flight reservation status in near-real time, and informs the TDC of the results to ensure that only verified passengers proceed into the appropriate screening lane based on passenger's SF screening status.

2.6.2. Guidelines for Donors

FAT and SAT will be required for a CAT. In addition, TSA may require the Donor to buy units including help desk and software support. Not every Donor will be required to provide this support, as it will be dependent on the quantity and timeframe that the CATs are deployed.

CAT requires a local 110-volt power source with grounding plug and connection to an active data port for operation. The Donor will need to confirm there are functional ports with network continuity.

2.6.3. Technology

The following is the list of technology that TSA can accept as a Capability.

Vendor	Device Make & Model	Software Version	Date Added to ACL
Idemia Identity and Security N.A.	N/A	Windows 10 Enterprise	April 2020

- 2.7. Enhanced Metal Detectors
 - 2.7.1. Technology Description

Also referred to as Walk-Through Metal Detectors, Enhanced Metal Detectors (EMDs) serve as a primary screening device of airline passengers for prohibited metallic objects at fixed checkpoints at the nation's airports.

2.7.2. Guidelines for Donors

FAT and SAT will be required for an EMD. EMDs are co-located with AIT in standard lanes and are the primary passenger screening capability used in TSA PreCheck[®] lanes. Therefore, the Donor is required to coordinate with TSA regarding whether an AIT is available to be deployed with the donated EMD. If the Donor intends to donate an AIT as well, please see Paragraph 2.1 for technology and FF&E required for an AIT.

2.7.3. Technology

The following is the list of technology that TSA can accept as a Capability.

Vendor	Device Make & Model	Software Version	Date Added to ACL
CEIA USA	02PN20/EZ	LX1A 1010	September 2020
CEIA USA	Standard Lane	28D1E-1	September 2020
CEIA USA	Pre-Check Lane	5GTAE-1	September 2020

2.7.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
CEIA USA	02PN20-EZ	Base Plate	CEIA USA	64355	Stabilizing Plate
Larry Copello Inc.	NAA-22	Operational Test Kit	Larry Copello Inc.	NAA-22	Operational Test Kit
Larry Copello Inc.	BR	Operational Test Kit	Larry Copello Inc.	BR	Operational Test Kit

- 2.8. Explosives Trace Detectors
 - 2.8.1. Technology Description

ETDs are highly sensitive devices developed to detect various types of commercial and military explosives. ETD technology detects explosive compounds on airline passengers, their accessible property, and checked baggage. ETDs identify explosives by detecting the chemical attributes of microscopic residues of an explosive compound. ETD technology is highly sensitive, thereby enabling fast and accurate screening for trace explosive quantities on a variety of surfaces. Simple operation of these machines further enhances their effectiveness. They are designed to be used as standalone systems or in conjunction with other technologies, such as the ATs, to provide a comprehensive program to screen for explosives. Currently, TSA uses ETDs as the primary screening method at very small airports, and for alarm resolution at larger airports.

2.8.2. Guidelines for Donors

FAT and SAT will be required for all ETD units.

2.8.3. Technology

Vendor	Device Make & Model	Software Version	Date Added to ACL
Smiths Detection Inc.	500DT	3.02.158	September 2019
Leidos Security Detection & Automation	QS B220	1.3.1.26116	September 2019

2.8.4. Furniture, Fixtures, and Equipment

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
Smiths Detection Inc. 500DT	500DT	Sampling Wand Frame	NACC	2820505-В	Sampling Wand Frame
Smiths		Sampling	NACC	1818944-A	Sampling Wand
Detection Inc. 500DT	500DT	Wand Velcro Shaper	DSA Detection	DWS8944	Velcro Shaper (10 pieces)
Smiths		Sampla	NACC	6822253-A	
Detection Inc. 500DT	500DT	Swabs	Princeton Security Tech	PSTNO-001	

			Microsilver, Inc.	SWAB/DT	Sampling Swabs - 500DT (200
			DSA Detection	DSW8055P	count)
			NACC	1823203-A	
Smiths Detection Inc.	500DT	Verific Pen	Princeton Security Tech	PSTVER-001	Verification Pen
500DT			DSA Detection	DVP1883	
Leidos Security Detection & Automation	QS B220	Optional Wand	L3 Security & Detection Systems, Inc.		Optional Wand for QS B220
Leidos Security Detection & Automation	OS B220	Sample	DSA Detection	ST1269	Sample Swab (100 count)
Automation	C ²	Swabs	Microsilver, Inc.	SWB/220	Sample Swab
Leidos Security Detection & Automation	QS B220	Verific Pen	DSA Detection	BSB1035	Verification Sample B (Positive)
Leidos Security			ETD Direct	IS1272-25	Calibration Trap
Automation	QS B220	Calibrant	DSA Detection	CT1272	Calibration Trap (25 count)

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
Either ETD		ETD/BLS Cabinet	Federal Prison Industries		Lockable cabinet that fits both the ETD and the BLS
Either ETD		ETD Search Table	Federal Prison Industries		Stainless Steel Search Table that conforms around the AVS and has storage for consumables
Either ETD		Anti-Fatigue Mats			Sufficient coverage in areas where TSOs operate

3. General Checkpoint FF&E

Vendor	Device Make & Model	Item	Peripheral Equipment Vendor	Item Number	Description
General Checkpoint		Stanchions	Lavi		Stanchions required for separating TSA Preè and Standard passengers in the queue
General Checkpoint		Hard Panels	Lavi		Hard panels that attach to the stanchions mentioned above for Pax separation
General Checkpoint		Re- Composure Benches	Highland Products Group		Benches for sterile side passenger area used for re- composure
General Checkpoint		TDC Podiums	Amplivox		Podiums used by the TSOs at the TDC position for checking passenger travel documents
General Checkpoint		Chairs	Noble		Chairs for TSO operations at the TDC
General Checkpoint		Supervisor Podiums	iBuyOfficeSupply		Podiums at the back of the checkpoint with locking cabinets, power and data for Supervisors on the checkpoint

General Checkpoint	Barriers	РСМ	Hard barriers to be placed between TSE at the sterile/non- sterile line
General Checkpoint	ADA Gates	РСМ	ADA Gates to be placed in line with the hard barriers above
General Checkpoint	Lights & Loupes		Lights and loupes required for travel document checking at the TDC position
General Checkpoint	Anti-Fatigue Mats		Sufficient coverage in areas of TSO operations

4. Checked Baggage Transportation Security Equipment

4.1. Explosives Detection Systems

4.1.1. Technology Description

TSA uses EDS as the primary checked baggage screening method to achieve its 100% screening mandate. EDS equipment can exist in two configurations:

- Standalone systems typically are found in lobby screening for small airports, or in larger airports with terminals that have low baggage volumes.
- In-line configurations integrate the EDS equipment into the baggage handling system that is customized for each airport. In-line configurations integrate the EDS equipment into the baggage handling system to form the Checked Baggage Inspection System (CBIS). The CBIS are designed in accordance with TSA's Planning Guidelines and Design Standards (PGDS) to maximize efficiency, throughput, and minimize lifting of bags by TSOs. In-line designs must be submitted for TSA review in accordance with PGDS design phase submittal requirements. FF&E is not specifically listed for in-line configurations as all infrastructure and FF&E requirements are outlined in the PGDS and typically owned and maintained by the airport/project sponsor.

4.1.2. Guidelines for Donors

FAT and SAT will be required for all EDS units. iSAT will also be required for a CBIS configuration.

Vendor	Device Make & Model	Software Version	Date Added to ACL
Leidos Security Detection & Automation	3DX6700 and 3DX6700-ES	Most recent qualified configuration	September 2019
Smiths Detection Inc.	9800 SEIO SC	Most recent qualified configuration	September 2019
Smiths Detection Inc.	CTX-5800	Most recent qualified configuration	September 2019
Reveal / Leidos	CT-80DR+ and CT- 80DR	Most recent qualified configuration	September 2019

4.1.3. Technology

Vendor	Item	
Leidos Security Detection &	Primary Viewing Station (PVS)	
Automation		
Leidos Security Detection &	Secondary Viewing Station (SVS)	
Automation		
Leidos Security Detection &	Printer	
Automation		
Leidos Security Detection &	Network Equipment Package for 1-3 EDS	
Automation		
Leidos Security Detection &	Network Equipment Package for 4-6 EDS	
Automation		
Leidos Security Detection &	Network Equipment Package for 7-10 EDS	
Automation		
Leidos Security Detection &	Master Control Station	
Automation		
Leidos Security Detection &	Uninterruptable Power Supply (UPS) for 1-3 EDS	
Automation	United and the Denser Constant (UDC) for A CEDC	
Leidos Security Detection &	Uninterruptable Power Supply (UPS) for 4-6 EDS	
Automation	Unintermentable Device Supply (UDS) for 7,10 EDS	
Automation	Uninterruptable Power Supply (UPS) for 7-10 EDS	
Laidos Sacurity Detection &	Integration support	
Automation	integration support	
Leidos Security Detection &	Network Installation support	
Automation	retwork instantation support	
Leidos Security Detection &	Integration Site Acceptance Test Support	
Automation	meg.mon she i tee punte i est support	
Leidos Security Detection &	Seismic Anchors	
Automation		
Smiths Detection Inc.	Primary Viewing Station (PVS)	
Smiths Detection Inc.	Secondary Viewing Station (SVS)	
Smiths Detection Inc.	Printer	
Smiths Detection Inc.	Network Equipment Package for 1-3 EDS	
Smiths Detection Inc.	Network Equipment Package for 4-6 EDS	
Smiths Detection Inc.	Network Equipment Package for 7-10 EDS	
Smiths Detection Inc.	Master Control Station	
Smiths Detection Inc.	Uninterruptable Power Supply (UPS) for 1-3 EDS	
Smiths Detection Inc.	Uninterruptable Power Supply (UPS) for 4-6 EDS	
Smiths Detection Inc.	Uninterruptable Power Supply (UPS) for 7-10 EDS	
Smiths Detection Inc.	Integration support	
Smiths Detection Inc.	Network Installation support	
Smiths Detection Inc.	Integration Site Acceptance Test Support	
Smiths Detection Inc.	Seismic Anchors	
Reveal / Leidos	Primary Viewing Station (PVS)	
Reveal / Leidos	Secondary Viewing Station (SVS)	

The following is the peripheral equipment that is required for the TSE to be operational.

Reveal / Leidos	Printer
Reveal / Leidos	Uninterruptable Power Supply (UPS)
Reveal / Leidos	Seismic Anchor Brackets
Reveal / Leidos	Network Equipment Package for 1-4 EDS
Reveal / Leidos	Network Equipment Package for 5-8 EDS
Reveal / Leidos	Master Control Station
Reveal / Leidos	E-Stop switch
Reveal / Leidos	Hardware 24 port switch
Reveal / Leidos	Extended Length (XL) Conveyor kit
Reveal / Leidos	Air Conditioner
Reveal / Leidos	Scanner Pedestal
Reveal / Leidos	Conveyor Pedestal
Reveal / Leidos	XL Conveyor Pedestal
Reveal / Leidos	DR+ Extension Pedestal
Reveal / Leidos	Air Conditioner Pedestal
Reveal / Leidos	Seismic Anchor Brackets with Pedestal
Reveal / Leidos	Integration support
Reveal / Leidos	Network Installation support
Reveal / Leidos	Integration Site Acceptance Test Support

Item	Peripheral Equipment Vendor	Item Number	Description
Gravity Roller conveyor			
Gravity Roller lift gate			
conveyor			
Chairs			
Anti-fatigue mats			
Ball Transfer Tables			
Flexible Roller Conveyor			
Edge Guard for gravity			
roller conveyor			
ETD Search Table			
ETD Cabinet			

4.2. Explosives Trace Detectors

Please refer to Paragraph 2.8.

5. Other Capabilities

There are no additional capabilities at this time.